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The vibration and stability characteristics of a cracked beam translating between "xed
supports are investigated. Using Hamilton's principle and elementary fracture mechanics,
the equations of motion for the beam are developed. Throughout this analysis it is assumed
that the crack is shallow and always remains open, i.e., crack closure and the associated
impact conditions are not considered. In order to restrict attention to the open crack
scenario, parameter regimes corresponding to (1) a fully open crack, (2) a fully closed crack,
and (3) a partly open}partly closed crack are clearly identi"ed. For parameter values in
regime (1), the free vibration characteristics are studied via an eigenanalysis. This shows that
the natural frequencies (Im (j)) and stability characteristics (Re (j)) #uctuate as the crack
translates along with the beam between the two supports. For the shallow cracks being
considered, the #uctuations are attributed primarily to the localized drop in the mass per
unit length (occurring at the crack) rather than from the increased #exibility. Furthermore,
the magnitudes of these #uctuations are shown to vary with both the axial transport speed
and the crack depth and are mapped in the control parameter space. Implications for the free
and forced vibration problems are discussed.

( 2000 Academic Press
1. INTRODUCTION

Axially moving strings, cables, beams, and webs have been widely studied in the literature
[1, 2] and deal with applications including composite "ber threadlines, bandsaws, and
paper manufacturing. The present study considers the in#uence of a shallow crack on the
vibration and stability characteristics of a translating beam. In particular, the system
consists of a #exible beam translating along its longitudinal axis at a constant speed
c between two pin supports, which are "xed in inertial space. The beam also possesses
a single crack of "xed depth, which translates with the beam. Throughout this work, it is
assumed that the applied axial tension is large and that the internal bending moment is
small (a reasonable assumption for small amplitude, linear motion) such that the crack
always remains open. In other words, impacting conditions associated with crack closure
are not considered [3, 4]. To assure the validity of this assumption, as analysis is presented
which divides the applied axial tension*internal bending moment parameter plane into
regions corresponding to (1) a completely open crack, (2) a completely closed crack, and (3)
a partly open}partly closed crack. Then the attention is focused on the behavior in the
always open regime.

Introduction of a crack into a structure produces two signi"cant e!ects. First, there is
a change in the stress "eld near the crack trip which increases the local #exibility. Numerous
studies have used the stress intensity factor (K

I
) to characterize this change in #exibility; see
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reference [5]. The expressions for K
I
have been commonly used to investigate the vibration

characteristics of systems, including (non-translating) cracked beams, rotors, and plates
[6}10]. Still others have used a variational technique with exponential &&crack functions'' to
obtain a consistent theoretical description of the problem [11}13].

The second e!ect, which is not commonly incorporated, involves the discontinuity in the
mass per unit length of the beam produced by the presence of the crack. In a related study,
Wickert and Mote [14] examined the dynamics of a translating string carrying a discrete
mass (as opposed to a discrete material void). They showed that the mass acted to scatter
harmonic waves and that the frequencies #uctuated as the mass location varied during
translation.

In the present study, both e!ects are incorporated into a mathematical model to describe
the linear vibrations (both axial and transverse) of a cracked, translating beam. The
governing PDEs are discretized to a set of ODEs and then, using a shallow crack
assumption, they are linearized about the straight equilibrium con"guration. The vibration
and stability characteristics are examined using an eigenvalue analysis. It is shown that, like
the results presented in reference [14], the natural frequencies (Imj) and the stability
characteristics (Re j) #uctuate as the crack location moves. Furthermore, the in#uences of
the transport speed and the crack depth on the amplitude of these #uctuations are
demonstrated. The implications of these results for both the free and forced response are
considered and discussed.

2. MODEL DEVELOPMENT

2.1. SOME USEFUL CONCEPTS FROM FRACTURE MECHANICS

To begin, consider Figure 1; this shows a crack in a linearly elastic material. Points in the
material are identi"ed by the polar co-ordinates r and h, centered at the crack tip. It is well

established that the stress "eld associated with a crack decays as 1/Jr and varies with
h [15]. This is usually expressed in the form

p
ij
"

K
I

Jr
f
ij
(h),
Figure 1. Geometry and polar co-ordinate system used to describe the stress "eld near a crack tip.
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where K
I
is the stress intensity factor and is a function of the applied load and the size or

depth of the crack. If a combined load is applied, the resultant stress is simply the sum of the
individual stresses since the system is linear. For this study, the primary focus is on
combined bending and axial stretching of a long, thin beam. In this case, shear is ignored
and the net axial stress is

p"pb#ps"
1

Jnr
[Kb

I
f
b
(h)#Ks

I
f
s
(h)]. (1)

If the crack is allowed to propagate, new surface area is continually generated. This
disruption of the continuum requires that some of the internal strain energy of the material
be dissipated. This converted energy is usually described in terms of an energy release rate,
G. Of course, the amount of energy dissipated depends on how the crack is propagated.
Typically, cracks propagate in one of the three ways: mode I*crack opening, mode
II*sliding (in-plane shear), and mode III*tearing (anti-plane shear); see reference [15].
For the remainder of this study, only mode I deformations will be considered.

Under a bending/stretching loading scenario, the strain energy may be expressed in
terms of the square of the axial stress. Given equation (1), coupling occurs between
the bending and stretching terms. However, unlike the classic Kirchho! beam theory,
this coupling remains after the in"nitesimal energy d; is integrated over the domain.
In other words, ;J[Kb

I
#Ks

I
]2. Because the energy released during crack propagation

is simply a conversion of the strain energy, it should not be surprising that G is
also proportional to squared sum of the stress intensity factors. The particular expression
for the energy release rate for plane strain problems is presented in reference [15] and
takes the form

G(a/b)"
1!l2

E
(Kb

I
#Ks

I
)2 , (2)

where the stress intensity factors are functions of the non-dimensional crack depth a/b and
are given in reference [5]. This expression for the energy release rate will be used in the
following section to obtain the change in compliance due to a crack for a tensioned beam
undergoing transverse and axial vibrations.

2.2. THE EFFECT OF A CRACK ON THE LOCAL STIFFNESS

A schematic of the cracked beam under consideration is shown in Figure 2(a). The system
consists of two pin supports "xed in inertial space, which support the beam. The beam has
length ¸, height b, cross-sectional area A, axial transport speed c (moving to the right, as
shown), and is subjected to a constant tension force P. It also has a crack of "xed depth
a that translates with the beam. The crack location changes constantly and is given by the
variable m

0
"x

0
/¸. The presence of the crack reduces the sti!ness of the beam both in axial

stretching and in bending. In other words, a given load will produce more deformation in
the cracked beam than in its uncracked counterpart. This additional deformation is highly
localized near the crack and not distributed evenly over the structure. The asymmetric crack
also causes the neutral axis to dip down from the centerline in the vicinity of the crack. This
is shown schematically with a dashed line in Figure 2(a). This asymmetry produces an
eccentric loading scenario which leads to coupling between the bending and the stretching
deformations.



Figure 2. (a) A schematic of the cracked translating beam. (b) Crack closure beginning at the crack tip. (c) Crack
closure beginning at the crack mouth.
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To begin, consider the net e!ect of the crack and forget, for the moment, that the
additional deformation is highly localized. In this case, the global force}deformation
relations are

G
d

hH"[C] G
P
1

P
2
H , (3)

where d and h are measured of the overall (global) axial and rotational deformations,
respectively, P

1
"P is the axial tension, P

2
"M is the bending moment, and [C] is the

compliance matrix. In the absence of a crack, the compliance matrix is diagonal with terms
c
11
"(¸/AE)

0
and c

22
"(¸/EI)

0
, where the subscript indicates that this refers to the

uncracked structure. The addition of the crack increases the diagonal elements and
introduces o!-diagonal terms coupling the axial and the bending deformations:

[C]"
A

¸

EAB
0

#Dc
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Dc
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¸

EAB
0

#Dc
22

, (4)

where Dc
ij

is the change in #exibility which leads to the net increase in the global
deformation variables. The appropriate expression for the change in #exibility is

Dc
ij
"

L2

LP
i
LP

j
P

a

0

G(aN ) daN , (5)

where a is the depth of the crack, G is the elastic energy release rate, and P
i

are the
generalized forces described previously. A derivation of equation (5) is presented in
Appendix A. It should be noted that this description of the compliance matrix is only valid
for situations where the crack remains open. If the crack should close, the compliance will
experience a discontinuity (a strong non-linearity) and a very di!erent analysis would be
required. The limitations and applicability of the present open-crack theory are discussed in
section 2.3.



CRACKED TRANSLATING BEAM 323
The global change in compliance may be computed using equations (2) and (5) along with
the expressions for the stress intensity factors for a beam with an edge crack in bending and
stretching. These are found in reference [5] and take the form

Ks
I
"

P

bt
Jna F

1
(a/b), Kb

I
"

6M

b2t
JnaF

2
(a/b), (6, 7)

where F
1
(a/b) and F

2
(a/b) are

F
1
(a/b)"S

2b
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2bB
0)752#2)02(a/b)#0)37(1!sin(na/2b))3

cos(na/2b)
, (8)

F
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(a/b)"S

2b

na
tanA

na

2bB
0)923#0)1999(1!sin(na/2b))4

cos(na/2b)
. (9)

From this formulation, the global sti!ness matrix may be computed by simply inverting the
#exibility matrix, equation (4).

Thus far, a global approach has been taken despite the fact that the additional
deformation is known to be localized near the crack. This approach was taken because the
expression for the change in compliance, equation (5), was de"ned using the global
deformations d and h. To transform this global approach into a local one, two steps are
taken. First, the deformation measures are changed to the local measures of &&stretching''
strain and curvature. In other words, d and h are replaced by e

s
(x) and i (x) respectively. As

a result, the sti!ness is multiplied by ¸. To localize the additional deformation, the changes
in the sti!ness, DK

ij
, are multiplied by ¸ and the Dirac delta function centered at the

location of the crack, x
0
. This produces the sti!ness matrix

[K]"
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0
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) (EI)

0
!DK

22
¸d(x!x

0
)

, (10)

where the DK
ij

may be computed by inverting both the uncracked global compliance
matrix and the cracked global compliance matrix (equation (4)) and subtracting the former
from the latter.

2.3. LIMITATIONS

To this point, the discussion has focused on the open-crack scenario. In other words,
crack closure and the associated discontinuity in the sti!ness have not been considered. But
under what circumstances is this a reasonable assumption? To build some physical insight,
"rst consider the static case. If the beam is subjected to a tensile load and a positive bending
moment, the crack will always remain open; see Figure 2(a). Conversely, a compressive load
and a negative bending moment will lead to a completely closed crack. If the sign of the
axial load and the moment are opposite, the status of the crack will depend on the relative
magnitudes of the loads and the result is not immediately obvious. This is the underlying
di$culty in the dynamic problem since the beam vibration causes the internal bending
moment to periodically change sign. The objective here is to determine what combinations
of the constant axial tension and the bending moment lead to the initiation of crack closure.

The initiation of closure may begin either at the crack tip or mouth, as shown
schematically in Figures 2(b) and 2(c). For the moment, focus on the crack tip closing
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scenario is shown in Figure 2(b). From linear elasticity, it has been shown that the

displacement "eld near the crack tip follows a Jr law where r is the distance from the crack
tip along the crack [15]. Speci"cally, u(r)"(K

I
/E) (8r/n)1@2, where the stress intensity factor

is the sum of the stress intensity factors for bending and stretching: K
I
"Kb

I
#Ks

I
. Using

this expression along with equations (6)}(9), the crack tip opening is described by

u(r)"C
6M
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nB
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. (11)

As the crack tip begins to close, the displacement "eld of the crack drops to zero even for
non-zero r. As a result, the crack tip closure criterion is found by setting the coe$cient in
equation (11) equal to zero. This yields

M

Eb3
"

P

Eb2 C
0)923#0)199(1!sin((n/2) a/b))4

6(0)752#2)02(a/b)#0)37(1!sin((n/2) a/b))3)D , (12)

which is a straight line in the (P, M) parameter plane.
Next, consider the crack mouth closing scenario, as shown in Figure 2(c). Crack closure

begins when the mouth displacement due to bending is equal and opposite to the mouth
displacement due to stretching. In other words, d

b
#d

s
"0. Using the expressions

presented in reference [5] for the mouth de#ections, the criterion for mouth closure is

M

Eb3
"

P

Eb2 C
1)46#3)42(1!cos((n/2) a/b))

6 cos2((n/2) a/b) (0)8!1)7(a/b)#2)4 (a/b)2#0)66/(1!a/b)2D . (13)

This is also a straight line in the (P, M) parameter plane.
Equations (12) and (13) are shown in Figure 3 with a solid and dashed line, respectively.

This is for a crack depth of a/b"0)3. As indicated, the combination of a tensile load (P'0)
and a positive bending moment (M'0) leads to an open crack. Similarly, a compressive
Figure 3. The (P, M) parameter plane showing various types of behavior including a completely open crack,
a completely closed crack, and the onset of crack closure (either at the crack tip or mouth).



CRACKED TRANSLATING BEAM 325
load (P(0) and a negative bending moment (M(0) will ensure a closed crack. However,
the second and fourth quadrants of this "gure are more complicated because they contain
the parameter combinations which initiate crack closure. Fortunately, because this work
deals with open cracks, only the transition from an open crack to the initiation of closure is
critical. The initiation of closure lines have been darkened in Figure 3. It is also worth
mentioning that under a tensile (compressive) load the crack will always begin to close at
the mouth (tip).

As discussed previously, the objective of this work is to focus on the dynamics of
a translating beam containing an open crack. For the results of this work to remain valid,
the amplitude of the bending moment must satisfy

K
M

Eb3 K(K
P

Eb2 C
1)46#3)42(1!cos((n/2) a/b))

6 cos2((n/2) a/b) (0)8!1)7(a/b)#2)4 (a/b)2#0)66/(1!a/b)2D , (14)

where P is the speci"ed axial load.

2.4. EQUATIONS OF MOTION

Hamilton's principle is used to obtain the equations of motion for this system. As a result,
expressions for the internal strain energy, the kinetic energy, and the external work must be
developed.

The strain energy of the beam may be written as

;"P
L

0

1

2
q5[K]qdx , (15)

where ; is the strain energy, [K] is the sti!ness matrix de"ned by equation (10), and
q5"Me

s
, iN is a generalized deformation vector. Under the typical small slope assumption

the curvature is simpli"ed to i"v
,xx

. Also, e
s
is the stretching strain which is expressed as

e
s
"(u

,x
#P/EA). The last term in this expression, P/EA, represents a static strain resulting

from the constant axial load P.
Under the assumption that the crack is shallow and that the beam is long and thin, the

coupling terms are extremely small and may be neglected. This can be shown by examining
the static equilibrium equations
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u
,x
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21
u
,x
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i . (16)

Consider "xing the axial tension and choosing the most extreme bending moment
permitted (see equation (13)). Under this loading situation, the equilibrium equations may
be solved for the deformations and the relative contributions of the coupling terms, K

12
i/P

and K
21

u
,x
/M , may then be assessed. The results of such an analysis are presented in Tables

1(a) and 1(b). In each case, these coupling terms are all less than 3% even for a moderate
crack (a/b"0)4) and an extremely stocky beam (b/¸"0)1).

Eliminating the o!-diagonal terms leads to the following expression for the strain energy:
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where EI"(EI)
0
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0
), EA"(EA)

0
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0
), x

0
refers to the

location of the crack, and the DK
ij

are computed using the methods described in section 2.2.



TABLE 1(a)

¹he relative contribution of the coupling term, K
12

i/P, to the axial behavior

b/¸ a/b"0)1 a/b"0)2 a/b"0)3 a/b"0)4

0)1 7)38]10~4 3)34]10~3 9)15]10~3 2)14]10~2
0)04 4)86]10~7 2)09]10~6 5)18]10~6 1)04]10~5
0)02 1)91]10~8 8)21]10~8 2)02]10~8 3)97]10~8
0)01 4)49]10~12 3)23]10~11 7)97]10~11 1)56]10~10

TABLE 1(b)

¹he relative contribution of the coupling term, K
21

u
,x
/M, to the transverse behavior

b/¸ a/b"0)1 a/b"0)2 a/b"0)3 a/b"0)4

0)1 1)99]10~3 7)57]10~3 1)67]10~2 2)92]10~2
0)04 1)32]10~6 4)82]10~6 9)73]10~6 1)54]10~5
0)02 5)20]10~7 1)91]10~7 3)84]10~8 6)06]10~8
0)01 2)05]10~11 7)52]10~11 1)53]10~10 2)42]10~10
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The kinetic energy is given by

¹"

1
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,t
)2] dx , (18)

where o"o
0
!md(x!x

0
) is the mass per unit length of the beam, o

0
is the mass per unit

length of the uncracked beam, m is the reduction in the mass per unit length occurring at the
crack location, and c is the axial transport speed of the beam.

Using the expressions for the potential energy, kinetic energy, and mass conservation
(c Lo/Lx#Lo/Lt"0) with Hamilton's principle leads to the following uncoupled, linear
partial di!erential equations which govern the unforced, undamped motion of a translating
beam with an open crack:
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These equations are recast using the full expressions for EI and EA, and the following
dimensionless quantities: a new spatial coordinate m"x/¸, two new deformation

coordinates<"v/¸ and;"u/¸, and a dimensionless time q"tJEI
0
/o

0
¸4 . The result is
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. Furthermore, it should be understood that d"d(m!m

0
).
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Spatial derivatives of d(m!m
0
) are evaluated using the technique described in reference

[16].

2.5. NATURAL FREQUENCIES AND STABILITY

Having developed a model for a cracked, translating beam, the remainder of this work
focuses on developing a fundamental understanding of the system's response characteristics.
Speci"cally, the objective is to study the behavior of the linear natural frequencies and
stability characteristics of the beam as the crack translates through the domain (between the
supports).

To examine these characteristics, the governing equations are discretized using
a Galerkin procedure with the expansions

;"

n
+
i/0

a
i
(q)W

i
(m), <"

n
+
i/0

b
i
(q)U

i
(m) , (23)

where W
i
(m)"U

i
(m)"sin(inm) for the simply supported boundary conditions under

consideration here. These boundary conditions are justi"ed by the fact that, in most
applications, the axially moving material wraps around a pulley-type mechanism at the
boundary*satisfying a no-slip condition between the beam and the pulley. This no-slip
condition implies that the ends of the beam have no additional motion beyond the net
translation which is common to the entire beam. Hence, the deformation "elds; and< are
zero at the ends.

The discretized equations may be written in matrix form as

[M]xK#[G]x5 #[K]x"0, (24)

where x"Ma
1
, a

2
,2,b

1
, b

2
,2N5, [M] is the mass matrix, [G] is the skew-symmetric

gyroscopic matrix, and [K] is the linear sti!ness matrix. The natural frequencies for this
system are found by rewriting equation (24) in "rst order form and solving the associated
eigenvalue problem numerically [17].

3. RESULTS

3.1. TRANSVERSE VIBRATION

The model and the eigenvalue procedure developed in the previous sections are used to
examine the in#uence of the crack on the dynamics and stability of the translating beam.
Consider the transverse motion of a beam with a thickness-to-length ratio of b/¸"0)01,
a transport speed of half its critical speed c/c

cr
"0)5, and a crack depth of a/b"0)1. This

crack depth gives a mass loss ratio of k"0)1. The non-dimensional parameters are set to
k
1
"3)164, k

2
"2)503, k

3
"2)57]10~3, k

4
"0)151, k

5
"1200, r"1)27]10~9, and the

critical speed is c
cr
"33 m/s. Figure 4(a) shows the imaginary part of the "rst and second

eigenvalues as a function of the crack location for this case. As the crack enters the domain,
the natural frequencies are those of the uncracked, translating beam (given by the dashed
lines). As the crack translates to the right with the beam, there is a change in the frequencies.
Both the "rst and the second mode frequencies begin to increase. The "rst mode frequencies
continue to increase until a local maximum is achieved at the midspan and then they
decrease monotonically until the crack exits the domain at m

0
"1. The second mode

eigenvalue locus experiences two local maxima and a local minimum.



Figure 4. The (a) imaginary and (b) real parts of the transverse eigenvalue loci for the beam with a crack depth of
a/b"0)1 and a transport speed of c/c

cr
"0)5.
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There are four important observations to be made regarding Figure 4(a). First, the
frequencies are always larger than the uncracked travelling beam frequencies. This implies
that for shallow cracks the decrease in the mass per unit length dominates the behavior
(over the change in sti!ness). This can be seen by noting that both the e!ective mass and
sti!ness decrease by the introduction of a crack in the beam. Since the frequency generally
goes as Jk

eff
/m

eff
and the frequencies increase, the denominator must change more

rapidly than the numerator, i.e., the change in the mass per unit length is the dominant
feature of these shallow crack problems. Second, the Im (j) loci are symmetric about the
midspan m

0
"0)5. Third, the number of local maxima in each locus is equal to the mode

number associated with that locus. Finally, the #uctuations of the natural frequencies have
signi"cant implications for the forced response. For a moment, consider the uncracked,
translating beam. That system has an in"nite but countable number of resonant frequencies
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which should be avoided in the forced vibration problem. In the cracked beam problem,
these resonant frequencies #uctuate, creating frequency bands associated with resonance in
the cracked problem (these bands are darkened in the "gure). If the system is excited at
a frequency in one of these bands, the beam will begin to resonate as the natural frequency
passes through the excitation frequency. Fortunately, a steady state resonance will not
occur since the frequency continues to change. But a large transient may be initiated. Of
course, the size of the transient depends on the transport speed which controls the duration
that the natural frequency dwells near the excitation frequency.

The real parts of the eigenvalues are shown in Figure 4(b). When the crack initially
enters the domain, Re (j)"0. This is in agreement with the uncracked problem. As the
crack begins to move through the domain all of the Re (j

i
) are positive, indicating the

system is dynamically unstable. The stability of the "rst mode changes as the crack
passes the midspan. The second mode locus #uctuates with a larger amplitude and twice
the frequency of the "rst mode. Both loci return to zero as the crack exits the domain
at m

0
"1.

From Figure 4(b), it is evident that the Re (j) loci are antisymmetric. As before, the
number of local maxima is equal to the mode number. Finally, the system always
destabilizes as the crack enters the domain (all Re(j

i
)'0). As the crack exits the domain,

the system is always dynamically stable. The extent to which the system experiences
unstable, growing transient oscillations depends on the transport speed. If the transport
speed is low and the system lingers in an unstable region, a large amplitude oscillation will
develop. However, if the transport speed is high, the crack will exit the dynamically unstable
regime before a large amplitude response can develop.

Perhaps the most important revelation about this system is that both the natural
frequencies and the dynamic stability characteristics change as the crack location (which
can be viewed as a parameter) changes. But how do other parameters, such as the crack
depth and the transport speed, in#uence the size of the resonant frequency bands? Figures
5(a) and 5(b) provide some insight. These show the size of the frequency bands as a function
of the transport speed for crack depths of a/b"0)1 and 0)3, respectively. Comparing
Figures 5(a) and 5(b) shows that deeper cracks lead to larger resonance bands for both
modes (indeed, for all modes) at all transport speeds below c

cr
. In both "gures, the size of the

"rst mode band does not change substantially for transport speeds below c/c
cr
"0)9. As the

divergence instability is approached at c/c
cr
"1, the upper boundary of the "rst mode

resonance zone continues to decrease mildly but the lower boundary, associated with the
frequency of the uncracked beam, drops to zero and widens the band. The second mode
resonance becomes slightly more narrow with increases in the transport speed.

Finally, Figure 6 shows the complex eigenfunctions at various crack locations
(m

0
"0)2, 0)5, 0)8) for the case a/b"0)3 and c/c

cr
"0)5.

3.2. AXIAL VIBRATION

Axial vibrations are also in#uenced by the presence of an open crack. Figure 7(a)
illustrates the behavior of the "rst two axial natural frequencies as the crack translates
between the supports for the case a/b"0)1, c/c

cr
"0)5, and the same set of constants given

earlier.
Many of the trends discussed for transverse vibrations also hold here. The eigenvalue loci
#uctuate and the number of maxima for a give locus equals the mode number, e.g., the "rst
mode locus has one maximum. As the crack exits the span, the frequencies again return to
those of the uncracked translating beam. The absolute magnitudes of the #uctuations in the



Figure 5. The resonance bands for transverse motion as a function of the transport speed for (a) a beam with
a crack depth a/b"0)1 and (b) a beam with a crack deptha/b"0)3.
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axial frequencies are much larger than those associated with transverse vibrations.
However, relative to their respective frequency scales, there is parity. For example, the
"rst and second transverse frequencies (see Figure 4(a)) experience up to 22 and 15%
change from their nominal, uncracked values while the "rst and second axial frequencies
experience up to 13 and 11% change. The real parts of the eigenvalues are presented in
Figure 7(b). Again, the behavior is qualitatively similar to the results presented for
transverse motion.

As before, the size of the resonance bands increase with mode number and crack depth.
As the axial transport speed is increased, the axial resonance zones also shrink mildly.
However, near the critical speed there is no drastic increase in the size of the "rst mode
resonance band since the fundamental axial frequency is never reduced to zero.



Figure 6. The real (- - - -) and imaginary (**) parts of the "rst two eigenvectors for three crack locations with
a/b"0)3 and c/c

cr
"0)5: (a) "rst mode, (b) second mode.
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3.3. A BRIEF NOTE ON CONVERGENCE

During the discretization, the series presented in equations (23) were truncated to n terms.
As a result, the issue of modal convergence arises. To ensure convergence of the "rst two
eigenvalues, a convergence study was performed. This consisted of "xing the number of
terms retained at n and computing the eigenvalues at four crack locations, m

0
"0)2, 0)4, 0)6,

and 0)8. The value of n was increased and the eigenvalues were again computed. The
eigenvalues were then plotted against the number of terms retained. Once the change in all
of the eigenvalues was below 0)5%, the system was said to be converged. Typically, 10 terms
(n"10) were su$cient to ensure convergence of the transverse eigenvalues. The axial
problem usually required many more modes to converge*usually in the range of n"24.

4. CONCLUSIONS

The objective of this work is to study the dynamics of a translating beam containing an
open crack. This problem is placed in a mathematical setting using linear elastic fracture
mechanics to describe the global change in sti!ness of the cracked beam. This change in
sti!ness and the discontinuity in the mass per unit length are localized in the vicinity of the
crack using a delta function representation. In addition to describing the change in sti!ness,
fracture mechanics is also used to develop a loading criterion that signals the initiation of
crack closure. Since an open crack is assumed, this criterion indicates the limitations of the
vibration results which follow.



Figure 7. The (a) imaginary and (b) real parts of the axial eigenvalue loci for the beam with a crack depth of
a/b"0)1 and a transport speed of c/c

cr
"0)5.

332 K. D. MURPHY AND Y. ZHANG
Using the local change of sti!ness, the equations governing the axial and transverse
vibrations of a translating, cracked beam are developed using Hamilton's principle. These
equations are non-dimensionalized and then discretized using a Galerkin projection. An
eigenanalysis is then carried out to ascertain the behavior of the natural frequencies (Im (j))
and the dynamic stability characteristics (Re (j)).

It is shown that as the crack translates with the beam between the "xed end supports, the
imaginary and real parts of the eigenvalues #uctuate. These #uctuations are seen as
eigenvalue loci plotted as a function of crack location between 0(m

0
(1. Turning to the

natural frequencies "rst, these #uctuations imply that at a "xed excitation frequency in the
resonance band the system will pass through resonance at least twice. This non-stationary
problem could lead to large transient oscillations. The size of the resonance band increases
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with mode number and crack depth. Furthermore, the size of each band is relatively
insensitive to changes in the transport speed until approximately 90% of the "rst critical
speed, at which time the "rst band widens in the transverse case.

As for the real part of the eigenvalues, each locus begins at zero and becomes positive.
This indicates that the system is dynamically unstable and free oscillations will grow, albeit
temporarily. As the crack continues to translate the loci #uctuate and all of the real parts
become negative, though not simultaneously. This indicates that the motion is
asymptotically stable.

In general, this work sheds light on some complexities in the modelling of axially
translating beams possessing an open crack. It also demonstrates some of the fundamental,
yet complicated, dynamics involved in this free vibration problem and alludes to some of
the di$culties involved in the forced vibration problem.
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APPENDIX A: CHANGE IN COMPLIANCE DUE TO CRACK

To obtain the expressions for the change in compliance due to the presence of a crack,
consider the beam shown in Figure A1(a), subjected to an axial load P

1
"P and a bending

moment P
2
"M. The resulting deformation consists of both axial deformation and an

angular rotation. Let d
ij

represents the deformation (i"1 for d, i"2 for h) resulting from
the application of P

j
.

First, consider applying P
1

alone (i.e., P
2
"0). The elastic strain energy stored in the

beam is equal to the area under the load}deformation curve, shown in Figure A1(b):
;"1

2
P
1
d
11

. Next, without unloading the structure, a bending moment P
2

is applied. This
causes two new contributions to the strain energy*one from the angular displacement and
another from an additional axial elongation induced by the bending moment, as shown in
Figure A1(c). The total elastic strain energy becomes

;"1
2
P

1
d
11
#1

2
P

2
d
22
#1

2
P
1
d
12

.

Given the force}deformation relations, d
ij
"C

ij
P
j
, the strain energy may be written as

;"1
2
C

11
P2

1
#1

2
C

22
P2
2
#1

2
C

12
P
1
P
2
.

Now, if the loading sequence were reversed, the energy would be the same except for the
"nal term. In this case, it would contain C

21
rather than C

12
. But, since the total energy

must be the same regardless of the loading sequence, it is evident that C
12
"C

21
.

To evaluate these changes in compliance, the de"nition of the energy release rate is used.
The energy release rate, G, is the strain energy released per unit crack area generated (by
opening the crack), i.e., G"!d;/da for a crack of unit depth. Separating variables and
using the expression for the strain energy leads to

1
2
C

11
P2
1
#1

2
C

22
P2
2
#C

12
P

1
P
2
"P

a

0

G(aN ) daN .
Figure A1. (a) The deformed beam described using the global co-ordinates d and h. (b) The force}deformation
curve and the stored energy for an applied axial load. (c) The force}deformation curve and the stored energy
obtained by superimposing a bending moment on the system.
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The compliance may then be expressed as

C
ij
"

L2

LP
i
LP

j
P

a

0

G(aN ) daN .

Expressions for G are available in reference [5] for a variety of geometries.
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